You are here

Uncertainty of downscaling method in quantifying the impact of climate change on hydrology

TitleUncertainty of downscaling method in quantifying the impact of climate change on hydrology
Publication TypeManual Entry
Year of Publication2011
AuthorsChen, J., F. P. Brissette, and R. Leconte
Journal of Hydrology
Volume401
Pagination190-202
Abstract

Uncertainty estimation of climate change impacts has been given a lot of attention in the recent literature. It is generally assumed that the major sources of uncertainty are linked to General Circulation Models (GCMs) and Greenhouse Gases Emissions Scenarios (GGES). However, other sources of uncertainty such as the choice of a downscaling method have been given less attention. This paper focuses on this issue by comparing six downscaling methods to investigate the uncertainties in quantifying the impacts of climate change on the hydrology of a Canadian (Quebec province) river basin. The downscaling methods regroup dynamical and statistical approaches, including the change factor method and a weather generator-based approach. Future (2070-2099, 2085 horizon) hydrological regimes simulated with a hydrological model are compared to the reference period (1970-1999) using the average hydrograph, annual mean discharge, peak discharge and time to peak discharge as criteria. The results show that all downscaling methods suggest temperature increases over the basin for the 2085 horizon. The regression-based statistical methods predict a larger increase in autumn and winter temperatures. Predicted changes in precipitation are not as unequivocal as those of temperatures, they vary depending on the downscaling methods and seasons. There is a general increase in winter discharge (November-April) while decreases in summer discharge are predicted by most methods. Consistently with the large predicted increases in autumn and winter temperature, regression-based statistical methods show severe increases in winter flows and considerable reductions in peak discharge. Across all variables, a large uncertainty envelope was found to be associated with the choice of a downscaling method. This envelope was compared to the envelope originating from the choice of 28 climate change projections from a combination of seven GCMs and three GGES. Both uncertainty envelopes were similar, although the latter was slightly larger. The regression-based statistical downscaling methods contributed significantly to the uncertainty envelope. Overall, results indicate that climate change impact studies based on only one downscaling method should be interpreted with caution. (C) 2011 Elsevier By. All rights reserved.

Citation Key190